

MAT2R3 TUTORIAL 9

Review:

(1) *Similarity*

Consider a linear operator $T: V \rightarrow V$ where V is a finite dimensional vector space. Let B and B' be two bases for V .

Last week we saw that how to represent T as a matrix. If we take the same basis for the domain and the target space, then we have the matrix $[T]_B^B$, and we write this as $[T]_B$.

What if we chose to represent T with B' instead of B ? We would expect the matrices to be related somehow since they represent the same transformation, and indeed they are!

If I is the identity transformation, i.e. $I(v) = v$, then we can consider the matrix $[I]_B^{B'}$. This is called the transition matrix, or change of basis matrix. If we call this matrix P , then we have $P^{-1} = [I]_{B'}^B$ and

$$[T]_B = P^{-1}[T]_{B'}P.$$

If we write a vector v in terms of the basis B , then P transforms v in B coordinates to v in B' coordinates, then we apply the transformation T in B' coordinates, and then P^{-1} takes us back from B' to B coordinates.

So any matrix representing T is related by an invertible matrix in this way. This is the definition of similarity.

We say that two matrices A and B are similar if there exists an invertible matrix P such that

$$A = P^{-1}BP.$$

(2) *Orthogonal and Unitary matrices*

We call a square matrix A orthogonal if $A^{-1} = A^T$. There are a bunch of useful facts about orthogonal matrices

- A matrix is orthogonal if and only if its rows / columns are orthonormal vectors in \mathbb{R}^n .

- The inverse of an orthogonal matrix is orthogonal, the product of orthogonal matrices are orthogonal, and the determinant of an orthogonal matrix is ± 1 .

- We have $\|Ax\| = \|x\|$ (so A doesn't stretch the vectors at all), and $Ax \cdot Ay = x \cdot y$.
- The change of basis matrix from one orthonormal basis to another orthonormal basis is an orthogonal matrix.

We say A is orthogonally diagonalizable if it is orthogonally similar to a diagonal matrix. This is equivalent to

- A is orthogonally diagonalizable,
- A has a set of orthonormal eigenvectors,
- A is symmetric.

The complex analog to orthogonal is unitary. The conjugate transpose of a complex matrix A is $A^* = \overline{A^T}$. A matrix is unitary if $A^* = A^{-1}$, and hermitian if $A^* = A$. All of the same facts above about orthogonal matrices apply to unitary matrices.

- A is unitary if and only if the columns / rows of A form an orthonormal basis of \mathbb{C}^n .
- The inverse of a unitary matrix is unitary, the product of unitary matrices are unitary, and the determinant of a unitary matrix has length 1.
- $\|Ax\| = \|x\|$ and $Ax \cdot Ay = x \cdot y$.

We call a matrix normal if $A^*A = AA^*$. Then we have the following equivalences

- A is unitarily diagonalizable,
- A has an orthonormal set of eigenvectors,
- A is normal.

(3) Example

Let $[T]_{B'} = \begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$ and $P = \begin{pmatrix} 4 & 5 \\ 1 & -1 \end{pmatrix}$ be the transition matrix from B to B' . Then we can calculate $[T]_B$ as

$$[T]_B = P^{-1}[T]_{B'}P.$$

We have $P^{-1} = \frac{1}{9} \begin{pmatrix} -1 & -5 \\ -1 & 4 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 1 & 5 \\ 1 & -4 \end{pmatrix}$,

so

$$[T]_B = \frac{1}{9} \begin{pmatrix} 1 & 5 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 1 & -1 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 1 & 5 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} 14 & 13 \\ -3 & -6 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} -1 & -17 \\ 26 & 37 \end{pmatrix}.$$

Problems:

Problem 1

Let $T: P_4 \rightarrow P_4$ be the linear operator $T(P(x)) = P(2x + 1)$. Use convenient bases to find a matrix representation of T and use this to determine if T is one-to-one and onto.

Solution:

Let $B = \{1, x, x^2, x^3, x^4\}$ and $B' = \{1, 2x + 1, (2x + 1)^2, (2x + 1)^3, (2x + 1)^4\}$. Then we have

$$[T]_B^{B'} = ([T(1)]_{B'} \mid \dots \mid [T(x^4)]_{B'}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

which is both one-to-one and onto.

Problem 2

Let $A = \begin{pmatrix} \frac{4}{5} & 0 & \frac{-3}{5} \\ \frac{-9}{25} & \frac{4}{5} & \frac{-12}{25} \\ \frac{12}{25} & \frac{3}{5} & \frac{16}{25} \end{pmatrix}$. A is an orthogonal matrix. Let $x = \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$. Verify that $\|Ax\| = \|x\|$.

Solution:

We have $Ax = \begin{pmatrix} \frac{-23}{5} \\ \frac{18}{25} \\ \frac{101}{25} \end{pmatrix}$, so $\|Ax\|^2 = 38$, and $\|x\|^2 = 38$, hence $\|Ax\| = \|x\|$.

Problem 3

Under what conditions will a diagonal matrix be orthogonal?

Solution:

A diagonal matrix has columns $a_i e_i$ where $a_i \in \mathbb{R}$ and e_i is the i 'th standard basis vector. The matrix is orthogonal if and only if its columns are orthonormal. The columns are already orthogonal, so we must have that the columns are normalized, i.e., $\|a_i e_i\| = |a_i| = 1$. So we have $a_i = \pm 1$.